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Metaheuristics have recently become the forefrontfathe current research as a powerful way to deal wh many electromagnetic
optimization problems. Based on the simulation oftte herding behavior of krill individuals, a krill h erd (KH) algorithm was recently
proposed to solve optimization problems. In orderd extend the classical mono-objective KH algorithnapproach, this paper proposes
a new multiobjective KH (MKH) algorithm and a modified MKH approach using the beta distribution in the inertia weight tuning.
Numerical results on a multiobjective constrained bushless direct current (DC) motor design problem kow that the evaluated MKH

algorithms present a promising performance.

Index Terms— Optimization, brushless DC motor design, krill hed algorithm, multiobjective optimization.

|I. INTRODUCTION

ECENTLY, Gandomi and Alavi [1] proposed the krill

herd (KH) algorithm, which is based on the simalatof
the herding behavior of krill individuals in natule KH, the
objective function for the krill movement is deténmd by the
minimum distances of each individual krill from fibcand
from highest density of the herd. KH has shown psorg
results when applied to single-objective globalirojtation
problems [2], [3]. Yet, the KH can be extended tive
multiobjective optimization problems (MOPs). Unlika
single-objective optimization problem, a MOP doe#, rin
general, have a unigue optimal solution. Instehd, dptimal
solutions to a MOP constitute possibly an infinget of
compromise solutions, known as Pareto optimal smiator
non-dominated solutions, which can be ordered domy
subjective preferences.

By extending the basic ideas for
optimization of KH, a multiobjective KH (MKH) appagh
and a modified MKH using beta distribution in theeitia
weight tuning are proposed in this paper to ineedse
solutions convergence and the population diversity.
brushless direct current (DC) wheel motor benchnpaoklem
[4], [5] is used to investigate the performancehef MKH and

the modified MKH approaches.
Il. FUNDAMENTALS OF THEKRILL HERD APPROACHES

In KH, the time-dependent position of the krill imdiuals

such as convergence and approximation to approairtie
true Pareto front, as well as diversify its solnfian such way
that at the end of each run the engineer has mrm@Es/e
solutions for the problem at hand.

Being so, it was employed a truncation proceduria éise
NSGA-II (Nondominated Sorting Genetic Algorithmergion
I1) [4] and the global best individual selectioniasMOPSO-
CD (Multiobjective Particle Swarm Optimization with
Crowding Distance) [5]. In the truncation proceduat the
end of each iteration both the parent and childupaijons of
krill are combined and sorted according to the mderiority
and crowding distance criteria. The solutions areptk
according to this ranking. In order to choose th#bg best
krill, we use the same ranking and choose randamnipng
the 10% best ranked krill. Thus, krill which expmora
nondominated and less populated region are giveme mo
chance to influence the other along the iteratiofsthe

single-objectivalgorithm. The procedure for implementing the MOK&h be

summarized as the pseudo code shown in Fig. 1.

The use of the beta probability distribution [6]ncae
useful to preserve diversity and helps to expladelén areas
in the search space. In MOKH approaph(Q), thep[0,1] is
related to the percentageof the classical update of inertia
weights utilization and (p) of the utilization of the beta
probability distribution in the inertia weights ning. The
classical update of inertia weightay(and «j) adopted both
0.9 at beginning and linearly decreased to 0.1.

is formulated by three main factors: (i) motion uedd, (ii)
foraging motion, and (iii) physical diffusion. Timeotion for a
krill individual is induced from other krill. Theofaging
motion is formulated in terms of two main effective
parameters. The first is the food location andssgond one is
the previous experience about the food locationKHy the
virtual center of food concentration is approxinhate
calculated according to the fitness distribution tbé Kkrill
individuals, which is inspired from “center of mass

In the present work an adaptation of the original K
algorithm as described above is proposed, in otderope

3 Perform the following motion calculation

with more than one and possibly conflicting objees. The

Generate and evaluate the initial population krill

Initialize theiteration

While the termination criteriotiteration <Maxiteration is not satisfied
For i = 1: (population size of krillsjo

Motion induced by the presence of otheniitllials
Foraging motion and physical diffusion
Implement the genetic operators
Update the krill individual position in tisearch space
End for
Assign each krill a rank equal to its nondonioratevel
Insert nondominated krills into the externakave
iteration = iteration + 1
EndWhile
Postprocess the optimization results

aim is to accomplish the goals in multiobjectiveimization

Fig. 1. Pseudo code of the MOKH.



Ill. BRUSHLESSDC MOTORDESIGN [2]

A brushless DC wheel motor benchmark was presented
[7] and the code for computing the objective fuotiis [3]
publicly available [8].

The problem is characterized by five continuousigtes 4]
variables (see Table I) subject to six inequalipnstraints
which are related to technological, operational and
considerations regarding the wheel motor. Hereptijectives [®]
are the minimization of,=1-77, wherer is the efficiency, and
f,=Mor, WhereM,y is the total mass, which has the constraint
Mot < 15 kg. (6]

The MOKH approaches must be supplemented with a
mechanism to efficiently handle constraints. Irstpaper, a [7]
third objective functionf; to be minimized related to the
number of infeasible constraints are adopted in the
optimization procedure. (8]

IV. NUMERICAL EXPERIMENTS

Different MOKH are compared on the brushless DCanot
optimization problem. In all 30 experiments weredighe
same parameters for MOKH approaches, namely the
population size of 30 krill, an external archive260 krill, and
a stopping criterion of 6,000 function evaluatiégmsach run.
Furthermore, it was adopted the foraging spetd.02, the
maximum induced speeN,»=0.01, and the maximum and
minimum diffusion speeds &,=0.01 and,=0.002.

Results for 30 runs are shown in Tables II, Il dig
while Fig. 2 shows the obtained Pareto fronts. Aditm to
the simulation results, the MOKHKy£0.5) presented promising

front and Euclidian distances (see results in ol@able II).
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TABLE Il
SPACING AND EUCLIDEAN DISTANCESINDICES (30 RUNS)

FOR THEFEASIBLE SOLUTIONS (f3 = 0) UsING MOKH

p PF* ED’ SP*

0 63 1.5934 0.0353
0.1 87 1.3851 0.0243
0.2 73 1.4900 0.0352
0.3 65 1.5630 0.0423
0.4 71 1.5186 0.0298
0.5 97 1.3128 0.0226
0.6 79 1.4485 0.0228
0.7 90 1.3397 0.0191
0.8 80 1.429: 0.026¢
0.9 83 1.3884 0.0305

1 83 1.4030 0.0244

0.07

0.065

X . h | * PF: Pareto frontf{ltered of 30 runs). # ED: Normalized Euclidean distance
results in terms of spacing, number of solutionshig Pareto (f,, ,) until the origin. % SP: Normalized spacing betwéee_ (,, f;) values(.)

TABLE |
OPTIMIZATION VARIABLES AND SEARCH RANGE
Variable Meaning Minimum  Maximum
value value
D¢ [m] Bore (stator) diamet 0.1¢ 0.3
Be [T] Air gap induction 0.50 0.76
o [A/m?] Conductor current density 2.0E6 5.0E6
Bq [T] Teeth magnetic induction 0.9 1.8
B [T] Stator back iron inductic 0.€ 1.€
V. CONCLUSION
For MOPs, evolutionary and swarm

algorithms in general have demonstrated to be tffe@nd
efficient tools for finding approximations of theufeto front.

intelligencé:ig- 2. Pareto set points (filtered of 30 runshgsVIOKH approaches.

In this paper, the MOKH algorithms with differeptvalues

are compared to solve the brushless DC motor beadhm
problem. The proposed MOKH approaches provided good

TABLE Il
RESULTS INTERMS OFDECISIONV ARIABLES FORMOKH (P=0)
Indices Ds[m] B.[T] 0 [AIm?] Bq[T] Bes[T]
'BestM 0.1919 0.6580  3.9728E6 1.7710 1.5943
’Best 17 0.2020  0.6599 2.0128E6 1.7995 1.1688
*MeanO} 0.179¢  0.673¢  2.8136E 1.798( 1.521¢

results in terms of mean values (30 runs) of sgpcnd
normalized Euclidean distances. Future researdhfaalis on

! Mt = 10.5858 and 1= 0.05517 Mo = 14.8804 and-;7 = 0.0472;
3 Mot = 11.6188 andl-7 = 0.0550.

MOKH with mechanisms to hold the diversity of the
population when applied to electromagnetic optitidra
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